A Unifying Framework for Information Theoretic Feature Selection

The Short Story

- ► Feature selection using mutual information is very popular.
- Accepted research practice is to hand-design filter criteria to maximise "relevancy" and minimise "redundancy".
- ► In contrast, here we *derive* a criterion, which naturally includes these concepts. This criterion provably maximises the joint likelihood of the discriminative model on the left.
- ► This enables us to retrofit numerous heuristics we find that 20 years of heuristics can be understood within a single theoretical interpretation.

The Relevancy/Redundancy mystery...

Many successful criteria try to maximise relevancy / minimise redundancy: $\blacktriangleright \text{MIM} - J_{MIM}(X_i) = I(X_i; Y)$

 $\blacktriangleright \text{mRMR} - J_{mRMR}(X_i) = I(X_i; Y) - \frac{1}{|S|} \sum_{X_i \in S} I(X_i; X_j)$ ► JMI - $J_{JMI}(X_i) = I(X_i; Y) - \frac{1}{|S|} \sum_{X_i \in S} I(X_i; X_j) + \frac{1}{|S|} \sum_{X_i \in S} I(X_i; X_j | Y)$

There are numerous suggested criteria 1994-2012... (incomplete list!)

Criterion	Full name	Author
MI	Mutual Information Maximisation	Various (1970s -)
MIFS	Mutual Information Feature Selection	Battiti (1994)
JMI	Joint Mutual Information	Yang & Moody (1999
MIFS-U	MIFS-'Uniform'	Kwak & Choi (2002)
IF	Informative Fragments	Vidal-Naquet (2003)
FCBF	Fast Correlation Based Filter	Yu et al (2004)
CMIM	Conditional Mutual Info Maximisation	Fleuret (2004)
mRMR	min-Redundancy Max-Relevance	Peng et al (2005)
ICAP	Interaction Capping	Jakulin (2005)
CIFE	Conditional Infomax Feature Extraction	Lin & Tang (2006)
DISR	Double Input Symmetrical Relevance	Meyer (2006)
IGFS	Interaction Gain Feature Selection	El-Akadi (2008)
MIGS	Mutual Information Based Gene Selection	Cai et al (2009)
mIMR	min-Interaction Max-Relevance	Bontempi & Meyer (2
CMIFS	Conditional MIFS	Cheng (2011)
		1

But... each is motivated from a different direction! Which can we trust?

Defining a Model

► We define our discriminative model [1] as follows:

$$\mathcal{L}(\mathcal{D},\boldsymbol{\theta},\tau,\lambda) = p(\boldsymbol{\theta},\tau)p(\lambda)\prod_{i=1}^{N}q(y^{i}|\mathbf{x}^{i},\boldsymbol{\theta},\tau)q(\mathbf{x}^{i}|$$

- $\triangleright \mathcal{D}$ is d-dimensional dataset with N samples, θ is a d-dimensional binary vector denoting the selected features, τ represents other model parameters controlling classification, and λ represents the data generation parameters.
- ► We use scaled negative log-likelihood, and so we minimise:

$$-\ell = -\frac{1}{N} \left(\sum_{i=1}^{N} \log q(y^i | \mathbf{x}^i, \boldsymbol{\theta}, \tau) + \log p(\boldsymbol{\theta}, \tau) \right)$$

http://www.cs.man.ac.uk/~gbrown

Gavin Brown, Adam Pocock, Ming-Jie Zhao, Mikel Luján Machine Learning and Optimization Group, University of Manchester, UK

Expanding the likelihood

• We can expand the joint likelihood of our model into a sum of multiple terms:

$$-\ell = -\frac{1}{N} \sum_{i=1}^{N} \left(\log \frac{q(y^{i} | \mathbf{x}^{i}, \boldsymbol{\theta}, \tau)}{p(y^{i} | \mathbf{x}^{i}, \boldsymbol{\theta})} + \log \frac{p(y^{i} | \mathbf{x}^{i}, \boldsymbol{\theta})}{p(y^{i} | \mathbf{x}^{i})} + \log p(y^{i} | \mathbf{x}^{i}) \right) - \frac{1}{N} \log p(\boldsymbol{\theta}, \tau). \quad (3)$$

► We interpret these terms as finite sample approximations to the information theoretic quantities of Entropy (H) and Mutual Information (I).

$$\ell \approx \mathbb{E}_{\mathbf{X}} \left(D_{KL} \{ p_{\theta} | | q_{\theta} \} \right) + \underbrace{I(X_{\neg \theta}; Y | X_{\theta})}_{\text{Feature Selection}} + \underbrace{I(X_{\neg \theta}; Y | X_{\theta})}_{\text{Feature Selection}} + I$$

- Minimising each of these terms maximises the likelihood.
- ▶ We now make the same assumption inherent in all *filter* feature selection algorithms, that our feature selection parameters and model parameters are independent. We do this by specifying $p(\theta, \tau) = p(\theta)p(\tau)$.
- ► Then the iterative forward update which maximises the likelihood is (assuming an uninformative prior):

$$X_k^* = rgmax_{X_k \in X_{\neg oldsymbol{ heta}^t}} I(X_k; Y | X_{oldsymbol{ heta}^t})$$

▶ We considered the case of informative priors in [2].

Investigating the assumptions of the literature

Most of the criteria can be written in a common functional form, as the relevancy minus the redundancy plus the complementarity.

$$J(X_i) = I(X_i; Y) - \beta \sum_{X_j \in S} I(X_i; X_j) + \gamma \sum_{X_j \in S} I(X_i; X_j | Y)$$
(6)

But how does this relate to the optimal criterion derived above?

- Each combination of terms (or value of β and γ) makes an *assumption*.
- ► This factorises the likelihood, resulting in an *approximate* update rule.
- ► MIM assumes complete independence, *i.e.* $\forall x_i, x_j p(x_i, x_j) = p(x_i)p(x_j)$. ► mRMR and JMI assume the selected features are independent given the one under
- consideration, *i.e.* $p(x_{\theta}|x_i) = \prod_{i \in S} p(x_i|x_i)$ and $p(x_{\theta}|x_i, y) = \prod_{i \in S} p(x_i|x_i, y)$.
- ▶ mRMR makes one further assumption, that all the features are pairwise class-conditionally independent (similar to the Naïve Bayes assumption), *i.e.* $\forall x_i, x_j p(x_i, x_j | y) = p(x_i | y) p(x_j | y).$

These different assumptions form an important theoretical difference between criteria, changing what they expect from the data distribution.One further difference is the scaling of the redundancy/complementarity

- terms. ▶ Popular criteria such as mRMR and JMI scale β and γ as |S| increases.
- ► This balances the size of the redundancy term so it does not dominate the relevancy term. Together these properties explain much of the empirical performance of the various criteria.
- ► Theoretically the JMI criterion makes the fewest assumptions, whilst balancing the terms and ensuring the informations involved are estimable.

 $(X) \leftarrow \lambda$

(Y**) ← θ**, τ

(2010)

 λ).

(2)

 $-\frac{1}{N}\log p(\boldsymbol{\theta},\tau)$. (4)

(5)

Experiment: Similarity

- ▶ 50 bootstraps, measure intersect of selected features with a corre for chance. Using Kuncheva's similarity measure (Kuncheva 20
- ► We visualise the results using multi-dimensional scaling.
- Proximity of dots indicates simi selected feature sets, across man datasets.
- Conclusion: Methods which ba relevancy/redundancy are cluste the outliers are different from this cluster and each other.

Conclusion: Some methods are *extremely* unstable with respect to small changes in training data. On average over 15 datasets, we find the JMI criterion (Yang & Moody, NIPS 1999) to have the most favourable properties.

Conclusions

- independence assumptions.
- Clear probabilistic framework to devise new methods...

References

[1] J.A. Lasserre, C.M. Bishop, and T.P. Minka. Principled hybrids of generative and discriminative models. In Computer Vision and Pattern Recognition, pages 87–94, 2006.

[2] A. Pocock, M. Luján, and G. Brown. Informative priors for markov blanket discovery.

tion		
ection		° mifs
	° mrmr	
2007).	° disr	
	° cmim	
	° jmi	° icap
ilar		
ny		° cife
alance	 condred 	
ered –		
10	Figure: Similarity results	s across 9 criteria

i igaio: Ommanly roouto aor using Kuncheva's measure.

Average pareto-optimal, non-dominated rank:

Accuracy/Stability Accuracy JMI (1.5) JMI (2.6) DISR (2.2) MRMR(3.6)DISR (3.7) MIM (2.3)MRMR (2.5)CMIM(4.5)CMIM(3.4)ICAP (5.3)ICAP (4.3)MIM (5.4)CIFE (4.8) CIFE (5.9) MIFS (6.5) MIFS (4.9)

► Unifying framework for over 20 years of heuristics – all are approximate maximisers of the conditional likelihood, with differing probabilistic

► We have natural definitions of relevancy, redundancy, and complementarity.

In Artificial Intelligence and Statistics (AISTATS 2012), volume 22, pages 905–913, 2012.

gbrown@cs.man.ac.uk