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The Short Story

I Feature selection using mutual information is very popular.
I Accepted research practice is to hand-design filter criteria

to maximise “relevancy” and minimise “redundancy”.
I In contrast, here we derive a criterion, which naturally

includes these concepts. This criterion provably maximises
the joint likelihood of the discriminative model on the left.

I This enables us to retrofit numerous heuristics — we find
that 20 years of heuristics can be understood within a single
theoretical interpretation.

The Relevancy/Redundancy mystery...

Many successful criteria try to maximise relevancy / minimise redundancy:
I MIM - JMIM(Xi) = I(Xi;Y)
I mRMR - JmRMR(Xi) = I(Xi;Y)− 1

|S|
∑

Xj∈S I(Xi;Xj)

I JMI - JJMI(Xi) = I(Xi;Y)− 1
|S|
∑

Xj∈S I(Xi;Xj) +
1
|S|
∑

Xj∈S I(Xi;Xj|Y)

There are numerous suggested criteria 1994-2012... (incomplete list!)
Criterion Full name Author
MI Mutual Information Maximisation Various (1970s - )
MIFS Mutual Information Feature Selection Battiti (1994)
JMI Joint Mutual Information Yang & Moody (1999)
MIFS-U MIFS-‘Uniform’ Kwak & Choi (2002)
IF Informative Fragments Vidal-Naquet (2003)
FCBF Fast Correlation Based Filter Yu et al (2004)
CMIM Conditional Mutual Info Maximisation Fleuret (2004)
mRMR min-Redundancy Max-Relevance Peng et al (2005)
ICAP Interaction Capping Jakulin (2005)
CIFE Conditional Infomax Feature Extraction Lin & Tang (2006)
DISR Double Input Symmetrical Relevance Meyer (2006)
IGFS Interaction Gain Feature Selection El-Akadi (2008)
MIGS Mutual Information Based Gene Selection Cai et al (2009)
mIMR min-Interaction Max-Relevance Bontempi & Meyer (2010)
CMIFS Conditional MIFS Cheng (2011)

But... each is motivated from a different direction! Which can we trust?

Defining a Model

I We define our discriminative model [1] as follows:

L(D,θ, τ, λ) = p(θ, τ )p(λ)
N∏

i=1

q(yi|xi,θ, τ )q(xi|λ). (1)

ID is d-dimensional dataset with N samples, θ is a d-dimensional binary
vector denoting the selected features, τ represents other model parameters
controlling classification, and λ represents the data generation parameters.

I We use scaled negative log-likelihood, and so we minimise:

−` = −1
N

( N∑
i=1

log q(yi|xi,θ, τ ) + log p(θ, τ )
)

(2)

Expanding the likelihood

I We can expand the joint likelihood of our model into a sum of multiple
terms:

−` = − 1
N

N∑
i=1

(
log

q(yi|xi,θ, τ )

p(yi|xi,θ)
+ log

p(yi|xi,θ)

p(yi|xi)
+ log p(yi|xi)

)
− 1

N
log p(θ, τ ). (3)

I We interpret these terms as finite sample approximations to the information
theoretic quantities of Entropy (H) and Mutual Information (I).

−` ≈ Ex

(
DKL{pθ||qθ}

)
︸ ︷︷ ︸

Classification error

+ I(X¬θ;Y|Xθ)︸ ︷︷ ︸
Feature Selection

+ H(Y|X)︸ ︷︷ ︸
Data Quality

−1
N

log p(θ, τ )︸ ︷︷ ︸
Prior

. (4)

I Minimising each of these terms maximises the likelihood.
I We now make the same assumption inherent in all filter feature selection

algorithms, that our feature selection parameters and model parameters are
independent. We do this by specifying p(θ, τ ) = p(θ)p(τ ).

I Then the iterative forward update which maximises the likelihood is
(assuming an uninformative prior):

X∗k = arg max
Xk∈X¬θt

I(Xk;Y|Xθt) (5)

I We considered the case of informative priors in [2].

Investigating the assumptions of the literature

Most of the criteria can be written in a common functional form, as the
relevancy minus the redundancy plus the complementarity.

J(Xi) = I(Xi;Y)− β
∑
Xj∈S

I(Xi;Xj) + γ
∑
Xj∈S

I(Xi;Xj|Y) (6)

But how does this relate to the optimal criterion derived above?
I Each combination of terms (or value of β and γ) makes an assumption.
I This factorises the likelihood, resulting in an approximate update rule.

I MIM assumes complete independence, i.e. ∀xi, xj p(xi, xj) = p(xi)p(xj).
I mRMR and JMI assume the selected features are independent given the one under

consideration, i.e. p(xθ|xi) =
∏

j∈S p(xj|xi) and p(xθ|xi, y) =
∏

j∈S p(xj|xi, y).
I mRMR makes one further assumption, that all the features are pairwise

class-conditionally independent (similar to the Naı̈ve Bayes assumption),
i.e. ∀xi, xj p(xi, xj|y) = p(xi|y)p(xj|y).

These different assumptions form an important theoretical difference between
criteria, changing what they expect from the data distribution.
I One further difference is the scaling of the redundancy/complementarity

terms.
I Popular criteria such as mRMR and JMI scale β and γ as |S| increases.
I This balances the size of the redundancy term so it does not dominate the relevancy term.

Together these properties explain much of the empirical performance of the
various criteria.

I Theoretically the JMI criterion makes the fewest assumptions, whilst
balancing the terms and ensuring the informations involved are estimable.

Experiment: Similarity

I 50 bootstraps, measure intersection
of selected features with a correction
for chance. Using Kuncheva’s
similarity measure (Kuncheva 2007).

I We visualise the results using
multi-dimensional scaling.

I Proximity of dots indicates similar
selected feature sets, across many
datasets.

I Conclusion: Methods which balance
relevancy/redundancy are clustered –
the outliers are different from this
cluster and each other.

Figure: Similarity results across 9 criteria
using Kuncheva’s measure.

Experiment: Accuracy and Stability
Average pareto-optimal, non-dominated rank:

Accuracy/Stability Accuracy
JMI (1.5) JMI (2.6)

DISR (2.2) MRMR (3.6)
MIM (2.3) DISR (3.7)

MRMR (2.5) CMIM (4.5)
CMIM (3.4) ICAP (5.3)
ICAP (4.3) MIM (5.4)
CIFE (4.8) CIFE (5.9)
MIFS (4.9) MIFS (6.5)

Conclusion: Some methods are extremely unstable with respect to small
changes in training data. On average over 15 datasets, we find the JMI criterion
(Yang & Moody, NIPS 1999) to have the most favourable properties.

Conclusions
I Unifying framework for over 20 years of heuristics – all are approximate

maximisers of the conditional likelihood, with differing probabilistic
independence assumptions.

I We have natural definitions of relevancy, redundancy, and complementarity.
I Clear probabilistic framework to devise new methods...
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